If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14r^2-53r-14=0
a = 14; b = -53; c = -14;
Δ = b2-4ac
Δ = -532-4·14·(-14)
Δ = 3593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-\sqrt{3593}}{2*14}=\frac{53-\sqrt{3593}}{28} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+\sqrt{3593}}{2*14}=\frac{53+\sqrt{3593}}{28} $
| 5/4x+35x=48 | | 4^(x)=0.0625 | | ‐3w+7=9w+49 | | 1/x-3+x/x-8=0 | | 2x+3(x-2)+2=46 | | (x-5)^2+3=51 | | (4R)^2=a^2+a^2 | | 5x+3(6x–4)=12 | | 2/3(6x-8)=-34 | | 2z×7=-5 | | 15x-10=-30 | | 9/4-4x-2=9 | | 288=4×3x | | 7=25–x | | 14148=x+.08x | | (4x-4)/3-(5x+2)/5+(x-3)/4=0 | | X+1/3-x-1/5=14 | | 9=-11+5x+x | | z+5=47 | | −5x+2x−9=−12 | | t(t-2)=-2 | | −3/x+14=8 | | 7t+2-2t-7=-4t-1+t | | -39=2(u-2)-7u | | 5/3x=3/2x-1 | | -3x+33=-55 | | 0.9u=-36 | | 5t+1=2t-0,2 | | (3x2+8x)=(7x2+3x) | | (4x-5)=(9x-10) | | x+4+4x+10(x-1)=22 | | -16=-1m |